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Immunonutrition: a South African perspective

Introduction

Over the last two decades, clinical nutrition has evolved from 

nutritional support that is intended to meet the patient’s needs 

only (denoting a passive role), to nutrition therapy that is selected 

according to the patient’s disease or medical condition. Currently, 

there is renewed interest in nutritional therapy in critical illness, 

particularly in the areas of immunonutrition and pharmaconutrition 

(or nutritional pharmacology).1 It is now known that nutrition is much 

more than just delivering basic substrates or nutrients that play a 

role in providing a fuel source for basic metabolism and cell growth, 

but that there are specific nutrients, or combinations thereof, that 

can reduce the risk of infection and improve outcomes in critically 

ill patients.2

Immunonutrition has been described as the ability to modulate the 

inflammatory or immune response by nutrients or a specific food 

item that is fed in amounts above what is normally consumed 

through the diet alone.3,4 Furthermore, some nutrients, when given 

in higher doses, appear to serve as pharmacological agents. In the 

latter context, these pharmaconutrients may positively or negatively 

alter clinical outcomes in a manner that is not dissimilar to the way 

in which any other pharmacological agent functions.1,5,6 

The earliest scientific evidence that implicates the role of nutrition in 

immune function is probably the description of thymic atrophy that 

was provided by Menkel in 1810.7 The birth of nutritional immunology 

(1800s) and the vitamin era (1900s) improved our understanding 

of the impact of nutritional deficiencies on the immune system.7 

Some of the pioneering work in immunonutrition was carried out 

by Alexander at the Shriners Burns Institute. His research led to the 

formulation of the Shriners’ burn formula, an enteral (EN) feeding 

solution that contained arginine, ω-3 fatty acids (FAs), and vitamins 

A, C and zinc.8 This formula resulted in reduced length of stay and 

reduced wound infections.9 Thus immunonutrition is not a new 

concept as it is often regarded, but rather the application thereof to 

new clinical settings.

The purpose of this article is not to provide an exhaustive review of 

the available literature on immunonutrition, but rather to highlight 

key and recent significant studies and relate them to the South 

African context. One of the restricting factors in providing state-

Abstract

Clinical nutrition has evolved from providing nutrients to meet the patient’s needs to nutrition therapy that additionally aims to provide specific 

nutrients, or combinations thereof, which can reduce infection and improve outcomes in critically ill patients. The value of immunonutrition 

in the management of critically ill, preoperative and postoperative patients is now acknowledged by many healthcare practitioners. Amid the 

demonstration of clinical and economic benefit in defined conditions, South African practitioners should aim to translate current knowledge 

to best practice in order to optimise nutrition therapy and ultimately clinical outcome in critically ill patients. For the future, a paradigm shift 

to pharmaconutrition has been suggested. This practice dissociates the administration of key single nutrients, in the form of requirement-

based parenteral or enteral nutrition, from the delivery of pharmaconutrients in the full effective pharmacological dose, as evaluated in large, 

well-designed trials, in order to achieve therapeutic effects. This has been evaluated in large, well designed trials. The purpose of this review 

is not to provide an exhaustive overview of the available literature on immunonutrition, but rather to highlight key and recent significant 

studies, with a focus on energy and protein, glutamine, arginine, omega-3 fatty acids and micronutrients, and relate them to the South African 

context. Finally, the bigger picture should always be borne in mind, within the settings of the complexity of the acute phase response and the 

heterogeneity of the critical care population. As the evidence base evolves, the definition of optimal nutrition therapy should include all relevant 

components in the right mix, at the right time, to the right patients, to ensure optimal clinical benefit and outcome.

© SAJCN Reprinted with permission from S Afr J Clin Nutr 2012;25(3):S1-S12

This article was prepared by SASPEN for the Critical 4 Africa Congress 2012, held at Sun City from 29 August - 2 September 2012 and was made 
possible by an educational grant from Nestlé: Nutrition Institute Africa (NNIA).



96

SASPEN Supplement: Immunonutrition: a South African perspective

2012;25(3)S Afr J Clin Nutr

of-the-art health care in South African is limited available finances. 
Often immunonutrition is perceived to be expensive when compared 
with standard enteral (EN) and parenteral (PN) products. Healthcare 
providers need to be more aware of the evidence base that supports 
the benefits of immunonutrition in defined populations, and that such 
an approach could ultimately result in cost saving, when prescribed 
correctly.

The critical care patient population

The population in the intensive care unit (ICU) is heterogeneous in 
nature. This diverse population suffers severe physiological stress 
or organ failure with varying degrees of acute phase response, 
insulin resistance and hyperglycaemia, protein loss, impaired gut 
function and immune system alterations. It has been suggested 
that the metabolic response after injury should be divided into 
three distinct phenotypes: the ischaemia-reperfusion phenotype, 
leucocyte phenotype and angiogenic phenotype.10 This may help 
to determine the best nutrition therapy for patients in a specific 
category. Furthermore, it has been consistently documented 
that approximately 15-70% of patients are undernourished 
or malnourished on admission to hospital,11-16 which further 
complicates the provision of optimal nutrition therapy. Against this 
heterogeneity, while the provision of nutrients to meet requirements 
remains of paramount importance, it might be considered simplistic 
that the “one nutrition therapy regimen will fit all” approach can 
provide optimal therapeutic support. 

What is to be achieved?

In part, the goal of the nutrition therapy dietitian or practitioner could 
be described as supplying the best possible nutrition therapy to 
the patient to aid the recovery process, prevent complications and 
discharge a functional patient home. This encompasses screening 
and assessing, as well as supplying the correct amount and mix of 
nutrients to support and modulate the acute phase response and 
immune system, and maintain and improve nutritional status. Due 

to high demand and cost of care, the overall objective remains 

minimising the duration and costs of hospitalisation, while still trying 

to provide optimal care. This raises the question whether or not these 

goals are mutually exclusive since immunonutrition is deemed to be 

expensive.

By preventing and managing the complications of malnutrition, 

nutrition therapy dietitians contribute significantly to lowering 

care costs. Protein-energy malnutrition (PEM) has been shown to 

be an independent risk factor for morbidity and mortality. PEM is 

associated with a significantly higher risk of complications, such as 

infection, increased mortality, increased length of stay in hospital 

and ICU, decreased quality of life and poorer prognosis, all of which 

have been shown to increase care costs.11,16-19 In this regard, despite 

the respective limitations of the reported studies, the consistency of 

the reported findings (Table I) may be more important than the actual 

costs, which are country-dependent. In addition, malnutrition is also 

associated with impaired cell-mediated immunity with changes in 

peripheral lymphocyte subsets, as well as increased cortisol levels 

and T-helper 1 to T-helper 2 cytokine shift.20 Furthermore, unplanned 

readmission of medical patients has been shown to be associated 

with chronic disease, depressive symptoms and underweight.21

The South African scenario: hospital malnutrition

The broader incidence of adult malnutrition in South African 

hospitals is largely unknown. Only a few studies are available in 

the published literature to date (Table II). The authors are aware of 

ongoing studies that should provide further crucial information once 

such information becomes available. The study populations vary and 

range from groups with high incidences of tuberculosis and human 

immunodeficiency virus (HIV)/acquired immune deficiency syndrome 

(AIDS), to groups who present with lifestyle diseases. Nevertheless, 

the high prevalence of malnutrition is consistent and the evaluated 

nutritional status parameters are known to be associated with higher 

care costs.  

Table I: Costs associated with malnutrition

Study Outcomes

Reilly et al, 198822 Well-nourished and no complications: $2 968 (hospital stay)
Malnourished and complications: $12 683 (hospital stay)

Chima et al, 199723 Not at risk of malnutrition: $4 563 ± 3 702 (hospital stay)
At risk of malnutrition: $6 196 ± 4 585 (hospital stay)

Desport et al, 199924 Mean daily hospital cost per well-nourished patient: $138
Mean daily hospital cost per malnourished patient: $228 

Braunschweig et al, 200025 Normally nourished at admission and discharge: $28 631 ± 1 835
Patients who declined nutritionally, regardless of nutritional status at admission: $45 762 ± 4 021

O’Flynn et al, 200526 Malnutrition costs the NHS in excess of £266 million annually through longer length of stay, readmissions and treatment costs

CEPTON study, 200727 Direct costs of under-nutrition and malnutrition amount to €9 billion/year in Germany

EuroOOPS study, 200828 NRS “at risk”: ↑ mortality (12%); ↑ length of stay in hospital (9 days); ↑ complications (30.6%); ↑ cost
NRS “not at risk”: ↓ mortality (1%); ↓ length of stay is hospital (6 days); ↓ complications (11.3%); ↓ cost

PREDYCES study, 200929 Patients at risk on admission: €8 207
Patients who were not at risk on admission:  €6 798
Patients who developed malnutrition in hospital:  €12 237 
Patients who did not develop malnutrition in hospital: €6 408

NHS: National Health Service, NRS: nutritional risk screening (NRS-2002)
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Infection and sepsis

Approximately 5-10% of patients who are admitted to acute care 

hospitals acquire one of more infection, affecting two million patients 

each year, and resulting in approximately 90 000 deaths annually in 

the USA. This adds an estimated $4.5-5.7 billion per year to the costs 

of patient care.36   

Sepsis, septic shock and the adverse sequelae of the systemic 

inflammatory response syndrome (SIRS) have been shown to be 

the 10th37-13th38 most common cause of death in the USA and the 

second most common cause of death in non-coronary ICUs.37 Sepsis 

is often lethal. It is suggested that the mortality rate is between 

20-50% in severely ill patients37 or 8-90%.38 Only 10% of deaths 

were reported to be related to underlying disease, while 25% were 

attributable to bacteraemia.38  

Costs that relate to care of a patient with sepsis have been described 

to be as much as $50 000 per patient, resulting in an annual burden 

of approximately $17 billion.37 There are approximately 400  000-

500 000 septic episodes annually in the USA.38 The Centers for 

Disease Control and Prevention (CDC) reported a 139% increase 

in the incidence of sepsis over the last 10 years. This occurred 

despite advances in knowledge and technological support.38 Sepsis 

accounts for $5-10 billion of the annual healthcare costs in the USA38 

and is reported to be the cause of 10% of ICU stays.37  

Although similar statistics are not available in South Africa, it is 

consistently documented that patients with infectious complications 

or sepsis have a longer length of stay and require second- and third-

generation antibiotics, both of which have major cost implications. 

It is reasonable to conclude that if nutrition can play a role in the 

management or prevention of infection and sepsis, it will ultimately 

benefit the patient and reduce care costs.

Immunonutrition and pharmaconutrition

Nutrition and the immune system

Nutrition and the immune system interact on various levels and four 
such stages of interaction have been described.7 Stages I (complete 
nutrition) and II (optimising macronutrients and micronutrients) are 
the so-called “passive” stages which aim to supply the immune 
system with essential nutrients. Stages III (active modulation of the 
immune system) and IV (personalised nutrition) involve modification 
of the immune response through immune response modifiers (IRMs) 
that primarily target the pathogen-associated molecular patterns 
(PAMP) expressed by microbial pathogen receptors in the gut and 
involve more active approaches in modulating immune status.7

Immunonutrition and pharmaconutrition in critical illness

In ancient cultures, very few patients survived 72 hours following 
severe illness or trauma. In the modern world, ambulances, 
ventilation, medication and nutrition therapy enable patients to 
survive serious insults and trauma that might have proved fatal. 
Today, some of the major challenges are sepsis and containment 
of the inflammatory response. Despite following strict protocols 
and procedures, including timely screening and assessment, early 
nutrition therapy and meeting nutrient requirements, there is a high 
incidence of complications such as infections and multi-organ failure 
(MOF), as well as malnutrition. The nutrition therapy practitioner is 
left with the question whether it is possible to influence the outcome 
in favour of positive clinical outcomes. Possible proposed solutions 
in the literature, and which are founded on a growing evidence 
base, include the use of nutrients to modulate the acute phase and 
immune response, to prevent oxidative damage, to ensure glycaemic 
control and to provide probiotics to alter the gut environment, as 
well as sufficient energy and protein. Probiotics are used to alter the 
gut environment. Nutrients are also used to provide sufficient energy 
and protein.

The targets of pharmaconutrients are the immune system, muscles 
and intestines. The expected benefits include preservation of 
lean body mass, decreased intestinal permeability, decreased 
proinflammatory response/SIRS, decreased nosocomial infections, 
shorter length of stay, decreased mortality and a decrease in care 
costs. Various nutrients have been suggested or have been shown  
to play a role as pharmaconutrients, including zinc, selenium, 
vitamin E, vitamin C, glutamine, arginine, ornithine-a-ketogluterate, 
fibre/short-chain FAs (SCFAs), prebiotics, probiotics and synbiotics, 
as well as energy and protein.4,39  

Just as antibiotics are organism-specific, all pharmaconutrients 
may not be beneficial in all critically ill patient populations at a given 
time. The effectiveness of a pharmaconutrient may be dependent 
on the stage or category of the acute phase response. For instance, 
the septic patient is in a hyperinflammatory state with SIRS 
predominance, with late predominance of the compensatory anti-
inflammatory response syndrome (CARS) resulting in a second round 
of infections, MOF and death. Typically, trauma and surgical patients 
display CARS predominance early on. Consequent infections result 
in sepsis and death. Therefore, it is clear that different nutrients 
will have different advantages and modulatory effects in these two 

states.20,40-42

Table II: Incidence of adult malnutrition in South African hospitals

Area, year Description of malnutrition

Zululand, 198330 Medical patients:
93% of male and 72% of female patients: Triceps 
skinfold thicknesses < 60% of normal
One third of patients: clinically marasmic

Durban, 198331 Hospitalised urban black patients:
Significantly reduced fat stores: 82% males

Cape Town, 198432 Medical and surgical patients:
Significant body weight depletion: 20% of patients
Significant fat depletion: 30% of patients
Significant muscle depletion: 15% of patients

Cape Town, 198833 Tuberculosis hospital:
Decreased body weight: 32.3% of patients
Fat depletion: 78.8% of patients
Muscle depletion: 37% of patients

Cape Town, 199734 Medical patients:
Severe malnutrition: 17%
Subclinical malnutrition: 77%

Eastern Cape, 201135 Burn patients:
46.3% malnourished at admission



99

SASPEN Supplement: Immunonutrition: a South African perspective

2012;25(3)S Afr J Clin Nutr

Energy and protein

Although energy and protein are not commonly described as 

pharmaconutrients, it is well known that protein and energy 

insufficiency results in malnutrition which is associated with an 

impaired immune response and impaired wound healing, both of 

which are in turn associated with infections.43 In the South African 

scenario, where finances are often limited, it is imperative to first 

provide the patient with basic nutrition support that meets the 

patient’s requirements. This includes meeting energy and protein 

requirements through EN, PN or both routes, early EN nutrition 

to support the gut-associated lymphoid tissue (GALT), mucosa-

associated lymphoid tissue (MALT) and modulate cytokines, 

and ultimately optimal feeding. Although this approach will not 

necessarily modulate the immune response, it will at least support 

the immune system. Various other nutrients have been also shown to 

play a role in the immune system, including vitamins, minerals and 

trace elements. Thus, meeting basic requirements is a prerequisite 

for a functional immune system.7

Despite increased awareness and efforts, very few ICUs worldwide 

successfully execute the basics in terms of nutrition support. In a 

study which included 259 ICUs worldwide (n = 5 497 ventilated 

patients), it was shown that when compared with medical patients, 

surgical patients were less likely to receive EN (54.6% vs. 77.8%) 

and more likely to receive PN (13.9% vs. 4.4%) (p-value < 0.0001). 

In patients in whom EN was initiated, on average, surgical patients 

started EN 21 hours later (57.8 vs. 36.8 hours, p-value < 0.0001) 

and received less of their prescribed energy from EN (33.4% vs. 

49.6%, p-value < 0.0001) or from all nutrition sources (45.8% 

vs. 56.1%, p-value < 0.0001) than medical patients.44 Therefore, 

basic principles need to be established and cemented to be able to 

successfully add immunonutrition and pharmaconutrition concepts 

when supporting such patients.

The source of protein that is used in an EN formula may also 

impact on immune function. Whey protein is high in branched chain 

amino acids, particularly leucine, which is known to play various 

roles, ranging from being a substrate for protein synthesis, to a 

modulator of insulin signaling. In addition, whey protein is high in 

cysteine which is the limiting amino acid for glutathione synthesis 

and is necessary for antioxidant defenses. Whey, a “fast” protein, 

preferentially stimulates protein synthesis which potentially makes 

it an excellent source of amino acids in critically ill patients.45 

Gastric emptying of whey-based formula is faster than similar 

casein-based formula46 and may be beneficial in critically patients 

with motility disorders. A comparison of equal volumes of whey-

based formula that had different energy densities and osmolalities 

indicated that they emptied at a comparable rate. This can improve 

nutrient delivery to patients with volume intolerance.46 Preclinical 

studies reported that whey protein also facilitated protein synthesis, 

decreased inflammation, had antioxidant effects and reduced gut-
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reperfusion injury.47 A double-blind randomised controlled trial (RCT) 

compared early EN with a formula containing whey with standard 

EN (containing casein as the protein source) in ischaemic stroke 

patients, and reported that whey may decrease inflammation and 

increase antioxidant defenses.48  

Small peptide EN formulation may also be beneficial as a number of 

studies have reported that at a physiological level these formulations 

are easier to absorb over the gut lumen, result in less feeding 

intolerance and increase protein synthesis at the visceral level 

through increased nitrogen retention. Preclinical studies have shown 

a greater increase in glucagon which may have a positive trophic 

effect on the intestinal mucosa. Animal studies have also shown that 

peptide diets have higher levels of nitrogen retention, higher rates 

of weight gain, higher rates of tissue repair and a positive trophic 

effect on the small bowel mucosa, compared to free amino acid 

formulations.47

However, more human data is necessary to substantiate the claims 

for both whey protein and small peptides based protein sources 

and to strengthen the evidence-base in clinical practice. It should 

nevertheless be noted that these substrates are currently much 

cheaper than pharmaconutrients, are readily available in the South 

African market, and should thus at least be considered in the 

treatment of critically ill patients in the local context.

Glutamine (cell-protective nutrients)

Glutamine is now considered by many investigators to be 

“conditionally essential” in critical illness.49,50 Deficiency can develop 

within 24 hours in this group of patients. It is the most abundant 

free amino acid in the body, but stores are rapidly depleted during 

injury or critical illness. Deficiency states are described in patients 

with trauma, sepsis, surgery and burns.8,50,51 Glutamine serves as a 

metabolic substrate for immune cells and enterocytes, supporting 

barrier and immune function.50 It may also serve as a vital cell-

signalling molecule in states of illness and injury.52  In this regard, 

glutamine has been shown to regulate the expression of many genes 

that relate to metabolism, cell repair and defense, signal transduction 

and activation of intracellular signalling pathways.52 Glutamine 

release could further serve as a “stress signal” to the organism 

to turn on genes that are vital to cellular protection and immune 

regulation.50 An example of the latter is glutamine’s potential key 

role in enhancing the synthesis of heat-shock proteins (HSPs), which 

are essential to cellular recovery following injury, and for protection 

against organ failure.2,50

On the balance of the available evidence, glutamine supplementation 

in critically ill patients is currently recommended by the American 

Society for Parenteral and Enteral Nutrition (ASPEN)/Society of Critical 

Care Medicine (SCCM),53 European Society for Parenteral and Enteral 

Nutrition (ESPEN)54 and the 2009 Canadian Practice Guidelines.55,56 

A 2009 systematic review demonstrated that glutamine 

supplementation of total PN (TPN) reduced mortality by 29%. All EN 

and PN studies showed a 25% reduction in mortality.56 In line with 

these findings, a recent Scandinavian study (n = 413) also found 

a reduction in mortality with intravenous (IV) glutamine.57 However, 

the Scottish Intensive care Glutamine or seleNium Evaluative Trial 

(SIGNET) in 10 centres in Scotland (n = 5 02) showed no significant 
effect of glutamine supplementation of TPN on mortality or infectious 
complications.58 The lack of effect of glutamine in the Scottish trial 
has been attributed to various factors, including the low dose of 
glutamine used (20 g/day), the short period of administration (four 
to five days) and late implementation. Trials with > 0.3g/kg have 
been shown to have better outcomes. The best results were obtained 
using 0.5 g/kg of IV glutamine.59 The available literature suggests 
that glutamine needs to be administered early since deficiency can 
develop within 24 hours. The no-effect of IV glutamine on plasma 
glutathione60 or the innate immune system61 may indicate that 
glutamine exerts its beneficial effects via mechanisms other than 
the immune system, such as HSP induction.  

EN supplementation of glutamine has a significant beneficial effect on 
immunity, as shown in burn patients. In these patients, 26 g enterally 
supplied glutamine resulted in three times less frequent positive 
blood cultures.62 Fourteen days of glutamine supplementation via 
the EN route (0.5 g/kg/day) significantly increased serum glutamine 
levels,63,64 as well as plasma pre-albumin and transferrin levels.64 
In thermal injury, a setting that is associated with suppressed 
cellular immunity, glutamine supplementation significantly improved 
various measures of cellular immunity, but had no effect on humoral 
immunity.63 Hospital stay in such patients was significantly reduced 
in both studies and wound healing was faster.63,64 EN glutamine 
supplementation in other groups of critically ill patients has been less 

Table III: Glutamine for specific patient populations: clinical practice recommendations53,56,69

Patient population CCCPG ASPEN/SCCM ESPEN

General No recommendation Possible benefit (B)* No recommendation

Elective and major surgery No recommendation No recommendation No recommendation

Trauma Possible benefit Possible benefit (B)* Benefit (A)**

Sepsis No recommendation No recommendation No recommendation

Burns Possible benefit Possible benefit (B)* Benefit (A)**

ALI/ARDS No recommendation No recommendation No recommendation

ALI: acute lung injury, ARDS: acute respiratory distress syndrome, ASPEN: American Society for Parenteral and Enteral Nutrition, CCCPG: Canadian Critical Care Practice Guidelines, ESPEN: European Society for 
Clinical Nutrition and Metabolism, SCCM: Society of Critical Care Medicine 
Grading (A, B) based on level of evidence: American Society for Parenteral and Enteral Nutrition/Society of Critical Care Medicine53 and European Society for Clinical Nutrition and Metabolism69 grading
*ASPEN: Grade B recommendation: supported by one level I [large, randomised trials with clear-cut results, low risk of false-positive (alpha) error or false-negative (beta) error] investigation
**ESPEN: Grade A recommendation: (Ia) meta-analysis of randomised controlled trials, or (Ib) at least one randomised controlled trial
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beneficial, possibly due to the low dose administered and ingested 

for a clinical effect to be documented, as shown by Soquel et al.65

Considering the strength of the evidence base, the administration 

of glutamine in defined critical care settings (Table III) should be 

standard practice in the South African context. Large, multi-centre 

RCTs are currently underway which will provide further clarify and 

better define glutamine requirements in critically ill patients.66-68

Arginine (immune-modulating nutrients)

As the evidence base expanded, the hype surrounding arginine as 
a pharmaconutrient included initial optimism, followed by severe 
caution, to having a definite and appropriate place in the critical care 
setting. Arginine can enhance immune parameters, e.g. lymphocyte 
function, after trauma and surgery, and has been shown to improve 
wound healing.70,71 On the other hand, very little benefit and perhaps 
harm has been observed in septic patients.72-74 Arginine may enhance 
the systemic inflammatory response in septic patients. This results 
in increased mortality.72,75 This is a clear example that the “one 
nutrition therapy regimen will fit all” approach is not appropriate in 
the critical care setting.

Arginine plasma levels have been shown to be significantly reduced 
in surgical and trauma patients, but not in septic patients.76 Arginase 
levels are only modestly increased in septic patients, as compared 
to the significant increase that is seen in trauma patients.8,77 During 
sepsis, there is a classic macrophage response and a maximum 

increase in inducible nitric oxide synthase (iNOS), interleukin (IL)-1 
and T-helper cell 1 cytokine proliferation [interferon-γ, IL-1, tumour 
necrosis factor (TNF)]. In trauma, the alternative macrophage 
response results in significant arginase increase, IL-10 and T-helper 
2 cell cytokine proliferation (IL-4 and IL-13).70,78 Thus, clinical benefit 
has not been demonstrated for the use of arginine in septic patients.

Two recent systematic reviews in surgical patients demonstrated 
a reduction in infectious complications, length of stay and 
postoperative infections with arginine supplementation.79,80 These 
two reviews reported no harm in surgical patients. The Drover et 
al systematic review on perioperative supplementation of arginine 
(it included 35 trials) supports a significant treatment effect of 
arginine therapy following elective surgery.79 Arginine-supplemented 
diets were associated with considerably reduced overall infectious 
complications when compared with standard formula in surgical 
patients [28 trials included; relative risk (RR) = 0.59, 95% 
confidence interval (CI), 0.50-0.70, p-value < 0.00001, I2 = 26%)]. 
Overall hospital length of stay, aggregated across 29 studies, was 
reduced in surgical patients receiving arginine-supplemented diets 
when compared with patients receiving standard formula [weighted 
mean difference (WMD) = -2.38; 95% CI, -3.39 to -1.36; p-value 
< 0.00001; I2 = 87%]. Arginine-supplemented diets did not have a 
significant effect on mortality.

Considering the evidence-base, arginine supplementation should 
be standard practice where safe and appropriate (for surgery and 

trauma) in the South African context.
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Omega-3 fatty acids (anti-inflammatory nutrients)

Fish oils decrease the production of pro-inflammatory mediators.81 

The anti-inflammatory properties occur through three principle 

mechanisms: displacement of arachidonic acid in cell membranes, 

prostaglandin E3 and LTB4 production, decreased nuclear factor-

kappa B (NF-κB) and AP-1 activation.81 Omega-3 FAs (ω-3 FAs) 

have also been shown to decrease the production of nitric oxide 

(NO) via downregulation of iNOS protein expression.81,82 Although 

the inclusion of ω-3 FAs in nutrition therapy makes theoretical 

sense and the potential mechanisms are fairly clear, the data for the 

implementation of such nutrient therapy in critically ill patients are 

much less concrete.

Of particular interest in the critically ill patient is the effect of ω-3 FAs 

on the adult respiratory distress syndrome (ARDS). An EN product 

that contains fish oils, borage oil and antioxidants is recommended 

by the Canadian Practice Guidelines 2009 for the treatment of 

ARDS.55,56 Three studies with the said product as active intervention 

in patients with diagnosed ARDS have shown a reduction in 

pulmonary neutrophils, an improvement in oxygenation, decreased 

severity of ARDS, decreased ventilator days, decreased length of stay 

in ICU and length of stay in hospital and decreased lung cytokine and 

protein secretion.83-85 Despite these positive results, some concerns 

were raised regarding the studies. These included the fact that the 

control groups received high-fat formula, some studies did not have 

an intention-to-treat design and it was difficult to conclude whether 

it was the fish oil or other constituents in the formula that exerted the 

reported positive outcomes.  

Three recent studies complicated the interpretation of findings even 

further. A multi-centre study in Brazil (INTERSEPT study, 14 ICUs,  

n = 200) used the same product (as described above) for seven days in 

patients in the early stages of sepsis and with no organ failure. Although 

there were significant effects on some secondary outcomes such as 

length of stay in hospital and lenght of stay in ICU (LICU), there was no 

effect on mortality.86 It is important to note that the fish oil-containing 

product was used for prevention, and not as treatment, and that once 

more, the other nutrients may also have exerted beneficial effects. No 

benefit of the same product was found in a RCT in 11 Spanish ICUs  

(n = 89) in patients with a diagnosis of sepsis on admission.87 The Early 

versus delayed Enteral Feeding (EDEN)-OMEGA study investigated 

whether ω-3 FAs improved ventilator free days. In this multi-centre 

RCT (44 centres, n = 272) patients received EN supplementation 

(twice daily) of ω-3 FAs, γ-linolenic acid and antioxidants compared 

with an isocaloric control, within 48 hours of developing acute lung 

injury (ALI). It is important to note that this was administered as a 

bolus, whereas in the other studies the patients received continuous 

EN nutrition. The supplementation did not improve the primary end-

point of ventilator-free days or other clinical outcomes in ALI, and 

the practice may have been harmful. Sixty-day-hospital mortality 

was 26.6% in the ω-3 supplemented group vs. 16.3% in the control 

group (p-value = 0.054). Adjusted 60-day mortality was 25.1% and 

17.6% in the ω-3 and control groups, respectively (p-value = 0.11). 

The study was terminated early because of futility.88 In a phase II RCT 

in five North American centres (n = 89) the addition of fish oil did 

not reduce the biomarkers of pulmonary or systemic  inflammation 

in ALI. In this case, the fish oil was supplemented as a bolus as 

a single nutrient [9.75 g eicosapentaenoic acid (EPA) and 6.75 g 

docosahexanoic acid (DHA) daily]. The researchers concluded that 

the results did not support the conduct of a larger clinical trial in this 

population with this particular agent.89  

Heterogeneity of studies investigating the supplementation of EN 

fish oils complicates decision-making on the part of the nutrition 

therapy practitioner and makes the drawing of firm conclusions 

difficult. Although many of these studies have robust study designs, 

in many cases the study design, method of administration (bolus 

vs. continuous) and disease (established ARDS vs. ALI vs. sepsis) 

differed and single or mixed nutrients were investigated. However, it 

seems that bolus administration of fish oils is harmful in this group 

of critically ill patients and should not be practised.

Guidelines with regard to the use of PN lipids differ between the 

North American and European organisations. ESPEN recommends 

the use of lipid emulsions as part of TPN,54 while ASPEN and the 

Canadian guidelines recommend TPN without soy-based lipids.53,55,56 

The difference in these guidelines can probably be attributed to the 

regional availability of lipid sources (ω-3 containing lipid sources is 

not yet available in North America). The Canadian Practice Guidelines 

2009 further state that there is insufficient evidence to draw a 

conclusion as to the type of lipid to be used in critically ill patients 

on TPN.  

Four small recent studies using ω-3 FA containing PN had different 

interventions (ω-3 FAs as part of PN or supplemented PN ω-3 FAs). 

Although there was some indication of a reduction in mortality, no 

effect on infectious complications was documented.90-93 A significant 

reduction in procalcitonin levels was found in the study by Khor et 

al, suggesting that fish oil attenuates the inflammatory process.92 

A small study (n = 16) compared a standard PN lipid emulsion to 

a lipid emulsion containing ω-3 FAs in patients with ARDS. The 

fish oil-supplemented PN resulted in a beneficial alteration in lipid 

mediator profiles,94 the clinical significance of which still remains to 

be confirmed. A third-generation lipid emulsion containing soybean, 

medium-chain triglyceride, olive and fish oils (SMOFlipid) resulted 

in favorable FA profiles (a desirable reduction in the ω-6/ω-3-FA 

ratio)95 and retained hepatocellular integrity.96 Small trials showed 

that fish oil- (ω-3) supplemented PN had anti-inflammatory and 

hepatoprotective effects in hyperinflammatory disease such as 

sepsis,97 a beneficial effect on PN-associated liver disease,98 reduced 

the Acute Physiology and Chronic Health Evaluation (APACHE) II 

and Simplified Acute Physiology Score II, as well as procalcitonin 

in sepsis.92 However, clearly larger trials are required to confirm 

the findings or form the basis for recommendations in practice. A 

systematic review (six trials were included) concluded that PN lipid 

emulsions that contain fish oil had no mortality advantage, but 

significantly reduced infectious complications (p-value = 0.03). 

There was a trend towards shortening hospital length of stay by  

3.06 days (the exclusion of a heterogeneous study showed a 

significant reduction), and significantly reduced ICU length of stay by 

2.07 days.99 The authors of the systematic review further concluded 
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that although insufficient data precluded a conclusive economic 

advantage, the possibility of cost reduction existed,99 a conclusion 

that remains to be confirmed in clinical practice.   

Considering the current evolving evidence base and available 

guidelines, ω-3 FAs should be considered to form part of PN 

lipid emulsions, at least for their effect on lipid profiles and PN-

associated liver disease as discussed above, but strengthening 

of the evidence base is needed to reach firmer conclusions. EN 

omega-3 FA supplementation [fish-oil derived ω-3 FAs (EPA and 

DHA), borage oil and antioxidants] administered in the context of 

an immune-enhancing diet is currently recommended specifically 

for patients presenting with ALI and ARDS by ASPEN/SCCM (Grade 

A recommendation),53 ESPEN (Grade B recommendation)69 and the 

2009 Canadian Practice Guidelines.56  

Micronutrients

Critical illness is associated with increased production of reactive 

oxygen species and oxidative stress, and low levels of most 

micronutrients, with resultant diminished endogenous antioxidant 

defenses.100  The inherent antioxidant potential is overwhelmed in 

critically ill patients, resulting in cell damage, the SIRS response 

and increased morbidity and mortality in critically ill patients.81 

Micronutrient supplementation is thought to be beneficial to critically 

ill patients by ameliorating oxidative stress and by improving clinical 

outcomes.

Research on micronutrient supplementation in the critically ill has 

focused mainly on five micronutrients: selenium, zinc, copper, 

vitamins C and E. Individual studies have investigated the vitamin 

B group.100 The aims of supplementation can be described as 

provision of basic nutritional support (bearing in mind the increased 

requirements due to hypermetabolism and wound healing), the 

prevention and correction of deficiencies and modulation of the 

APR and immune responses through reinforcement of endogenous 

antioxidant defenses. 

Trials in patients with thermal injury have focused mainly on 

selenium, zinc and copper, after low blood concentration of these 

micronutrients had repeatedly been shown in this patient population, 

as well as the known uniqueness of this group of patients in terms of 

the extensive cutaneous losses of these micronutrients.101-104 Berger 

et al consistently demonstrated in a series of well controlled trials 

that trace element supplementation reduces infectious complications 

in burn patients. Supplementation (IV) of copper 2.5-3.1 mg/day, 

selenium 315-380 μg/day, and zinc 26.2-31.4 mg/day for eight to  

21 days resulted in a significant reduction in the number of infections. 

This related to a significant reduction of nosocomial pneumonia 

(p-value < 0.001) and of ventilator-associated pneumonia (p-value = 

0.023).105 This is in agreement with the authors’ previous data which 

showed that trace element supplementation resulted in a significant 

reduction in bronchopneumonia infections and consequent shorter 

hospital length of stay.106 Patients receiving 59 μmol Cu, 4.8 μmol 



104

SASPEN Supplement: Immunonutrition: a South African perspective

2012;25(3)S Afr J Clin Nutr

Se, and 574 μmol Zn per day (IV) demonstrated a significantly 

improved clinical course, including better graft take and fewer 

infectious complications. Supplementation was again associated 

with a significant reduction in infectious complications, especially 

bronchopneumonia.107

A growing body of evidence is emerging that demonstrates the 

potential benefits of micronutrient and specifically antioxidant 

micronutrient supplementation in critically ill patients. A recent 

systematic review included 15 RCTs involving 1 714 participants 

(primary objectives) and 18 RCTs involving 1 849 participants 

(secondary objectives).100 This updated review concluded and 

supported previous findings108 that micronutrient supplementation 

in the critically ill may be associated with a decrease in overall 

mortality [RR 0.78, 95% CI 0.67-0.90, I2 = 0%, p-value = 0.0009] 

and more specifically in 28-day mortality (RR 0.75, 

95% CI 0.63-0.88, I2 = 0%, p-value = 0.0006). 

Micronutrient supplementation in this updated 

review was not associated with a decrease in 

infectious complications, similar to the findings of 

Heyland et al.108 This finding could possibly indicate 

that the observed mortality effect was mediated by 

other mechanisms, e.g. increased organ function. 

The updated review was the first to report on 

LICU and length of stay and concluded that these 

outcomes were unaffected by micronutrient 

supplementation. A sensitivity analysis of 

combined micronutrient supplementation indicated 

a significant reduction in mortality (RR 0.69, 95% 

CI 0.54-0.90, I2 = 2%, p-value = 0.006). Although in 

contrast to the findings of the previous systematic 

review108 (i.e. single nutrients were associated 

with a significant decrease in mortality, combined 

micronutrients were not), this new finding of the 

updated review supports prior hypotheses and the 

rationale underlying the use of combinations of 

micronutrients, namely the biochemical properties 

of the endogenous antioxidant network and 

micronutrients’ interdependence for regeneration 

of antioxidant defenses.109 This updated systematic 

review did not find clear evidence that PN was 

superior to EN administration in terms of clinical 

outcomes. The authors recommended that future 

studies could investigate the use of PN and EN 

administration of micronutrients to maximise the 

opportunity of demonstrating a treatment effect, if 

Table V: Approximate ICU costs per day*

A. Standard high care postoperative costs (12 hours)

High care bed (R7 000.00/day)     3 500.00

Enoxaparin 40 mg SC X 1 76.80

Morphine 15 g 5 amps 23.96

Metoclopramide 10 mg 1 amp 2.50

Paracetamol 1 g 2 amps 130.00

Cefazolin 1 g 2 amps 25.60

TOTAL (High care bed and medication) R3 758.86

B. ICU costs and medication (treatment of complication)

ICU bed only, excludes ventilation     10 000.00

Phenylephrine (10 mg/ml) 1 ml X 30 1 807.00

Enoxaparin 40 mg SC X 1 76.80

Esomeprazole 40 mg IV X 1 186.57

Caspofungin 50 mg IV X 1 2 401.22

Imipenem-cilastatin 500 mg IV X 8 1 982.05

Linezolid 600 mg IV X 2 997.92

Amiodarone 200 mg NGT X 3 51.63

Morphine 15 g 10 amps 47.93

Metoclopramide 10 mg 3 amps 7.50

Remifentanil 5 mg X 5 2 508.00

TOTAL (ICU bed and medication) R20 066.62

C. Enteral nutrition + IV glutamine

Semielemental feed 2 litres X 1 511.64

IV glutamine 200 ml X 1 738.81

TOTAL (Enteral nutrition + IV glutamine) R1 250.45

 * These are approximate costs in one setting (Gauteng private hospital; 2012) used as an example only
(R20 066.62 x 3 days = R60 199.86)

Table IV: Supplemented antioxidant nutrients, vitamins and trace elements53,54,56

CCCPG ASPEN/SCCM ESPEN

Based on three level I, and 13 level II studies, the 
use of supplemental combined vitamins and trace 
elements should be considered in critically ill 
patients.

Combination of antioxidant vitamins and trace 
minerals, specifically including selenium, should 
be provided to all critically ill patients receiving 
specialised nutrition therapy.

(Grade B recommendation)

All PN prescriptions should include a daily dose of 
multivitamins and trace elements. 

(Grade C recommendation)

Insufficient data to make a recommendation 
regarding IV/PN zinc supplementation in critically 
ill patients.

RDA vitamins, minerals and trace elements.

Insufficient data to make a recommendation 
regarding IV/PN selenium supplementation alone, or 
in combination with other antioxidants, in critically 
ill patients.

Thiamine 100-300 mg/day for the first three days 
(deficiency states). 

(Grade B recommendation)

ASPEN: American Society for Parenteral and Enteral Nutrition, CCCPG: Canadian Critical Care Practice Guidelines, ESPEN: European Society for Clinical Nutrition and Metabolism, IV: intravenous, PN: parenteral 
nutrition, RDA: recommended dietary allowance, SCCM: Society of Critical Care Medicine
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one really exists. The secondary outcomes of this review confirmed 

that timing, duration and dosing are key factors to ensure optimal 

clinical benefit.100 

The latest systematic review, including 21 trials, regarding 

antioxidant micronutrients in the critically ill confirm the mortality, 

length of stay and LICU findings by Visser et al,100 and additionally 

report a significant reduction in duration of mechanical ventilation 

(WMD in days = -0.67, 95% CI -1.22 to -0.13, p-value = 0.02) with 

antioxidant supplementation.110 Furthermore, antioxidants were 

associated with a significant reduction in overall mortality in patients 

with higher risk of death (> 10% mortality in control group) (RR 

0.79, 95% CI 0.68-0.92, p-value = 0.003), whereas no significant 

effect was observed for trials of patients with a lower mortality in 

the control group.110 

The Cochrane Database Systematic Review by Avenell et al (updated 

2007) investigating the effects of single-nutrient supplementation, 

specifically selenium supplementation, including the selenium-con-

taining compound ebselen, concluded: “There is limited evidence 

to recommend supplementation of critically ill patients with sele-

nium or ebselen”.111 They found no significant differences for overall 

mortality and infectious complications and no clear evidence of the 

benefits of such supplementation for ventilator days, LICU, length 

of stay or quality of life. However, they did find that the evidence 

was more suggestive of a benefit on mortality in the first month for 

general ICU patients when compared with those with severe pan-

creatitis (p-value = 0.02). The more recent SIGNET trial58 found that  

500 μg selenium daily as part of PN in critically ill patients signifi-

cantly decreased new infections in a subset of patients who received 

the supplement for ≥ 5 days, but it did not affect mortality. When the 

SIGNET trial data58 for selenium supplementation were entered into 

the current Cochrane systematic review,111 the random effects risk 

ratio for mortality changed from 0.75 (0.59-0.96, I2 = 0%) to 0.86 

(0.74-1, I2 = 0%), and the risk ratio for new infections changed from 

1.22 (0.67-2.23, I2 = 0%) to 0.93 (0.79-1.09, I2 = 0%).111

In one older study, high-dose vitamin C administration during 

resuscitation (66 mg/kg/hour) was shown to attenuate lipid 

peroxidation and reduce resuscitation fluid requirements, as well as 

post-burn oedema. The length of mechanical ventilation was also 

significantly reduced and improved early respiratory function was 

observed.112

Other micronutrients that have received attention in recent years 

include vitamin D and vitamin B12. Vitamin D deficiency states have 

been described in patients with severe sepsis and other critically 

ill populations113,114 with low levels of vitamin D-binding hormone 

being reported.115 Studies of vitamin D replacement studies in the 

critically ill have mainly considered short-term outcomes and have 

generally led to increases in vitamin D levels.116,117 Whether the latter 

translates into meaningful clinical outcomes remain to be seen. 

It is unclear whether low levels of vitamin D contribute to critical 
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illness or are just a marker of illness severity. The outcomes of 

large clinical trials that investigated vitamin D supplementation are 

currently awaited. It is proposed that future studies should examine 

vitamin D as well as important metabolites of vitamin D, their binding 

proteins and parathyroid axis. The potential benefit of IV vitamin B
12 

supplementation as a pharmaconutrient in critically ill patients has 

been described,118 but clinical intervention trials studying vitamin 

B12 as a pharmaconutrient strategy in the critical care setting are 

awaited. One recent observational study indicated an increased 

mortality rate in patients with Vitamin B
12 levels over 900 pg/ml 

(p-value < 0.0002).119 Nutrition therapy practitioners should always 

bear in mind that “much more is not necessarily better” and that 

some micronutrients have or may have a narrow therapeutic window 

when high-dose supplementation is being considered. Furthermore, 

in this group of patients the potential exists for the creation of a pro-

oxidant microenvironment with deleterious patient outcomes. This 

should always be borne in mind.

Establishing exact micronutrient requirements in the critically ill has 

proven to be notoriously difficult. Various general sets of guidelines 

are available (Table IV). Despite these guidelines, little consensus 

exists as to what to use when, and many questions remain 

regarding required doses, routes and timing of replacements or 

supplementation.

Providing micronutrients to include the full range of trace elements 

and vitamins is an integral part of nutritional support. In practical 

terms in the South African context, it is clear that micronutrients 

should be provided at least at the current available recommended 

doses to prevent overt clinical deficiencies. For other claims, 

indications and higher doses, the literature consistently indicates 

that the ratio of risk (adverse effects) to benefit (mortality) may be 

favourable, and if such higher doses are used in practice, it should 

be within the dose range that the current experience covers, and for 

the clinical settings studied only.

Finally, the bigger picture should always be considered, bearing 

in mind the complexity of the acute phase response and the vast 

heterogeneity of the critical care population. Optimal nutrition 

therapy includes all relevant components, including attention to 

energy, protein, carbohydrates, lipids, fluids, fibre and the discussed 

immunonutrients and pharmaconutrients, in the right mix, at the 

right time, to the right patients, to ensure optimal clinical benefit 

and outcome.

Cost considerations

Considering the evidence base, sets of guidelines are available for 

the implementation of immunonutrition and pharmaconutrition in 

appropriate circumstances. But often, and specifically also in the 

South African setting, the final verdict regarding implementation 

is determined by cost. The available evidence on the benefits of 

and cost containment by nutrition therapy should not only be seen 

within the context of the limitations of the studies being reported 

and the regional variation of costs, but also within the context of the 

consistency of the reported benefits.  

Basic nutrition therapy costs have been reported to be US$20-
40 per day (EN nutrition), while PN nutrition costs US$55-200 per 
day. In addition, antibiotic therapy has been reported to amount to 
approximately US$65-US$1 345/day. 120

Already in 1997, it was shown that an immune-enhancing formula 
containing arginine not only significantly reduced late postoperative 
events in patients undergoing gastric surgery, but also reduced 
the costs of treating complications (83 563 Deutsche Mark in the 
experimental diet group vs. 122 430 Deutsche Mark in the control 
group, resulting in a cost-reduction of 38 867 Deutsche Mark).121 
In a more recent study, the projected investment and cost savings 
using arginine-containing formula for 1 000 well-nourished surgery 
patients, with a 20% base infection rate, was US$45 000 and  
US$1 442 000 respectively. The projected investment and cost 
savings using arginine-containing formula for 200 malnourished 
surgical patients, with a 20% base infection rate, was US$44 000 
and US$272 400 respectively.  Finally, the projected investment 
and cost savings using arginine-containing formula for 200 trauma 
patients, with a 60% base infection rate, was US$35 000 and 
US$759 400 respectively.122

Recently, a simulation study, incorporating outcome rates from  
200 Italian ICUs for over 60 000 patients, was conducted to 
determine whether PN alanyl-glutamine supplementation (compared 
to standard TPN) in critically ill patients had the potential to partially 
or totally offset its own costs by reducing the consumption of other 
medical resources. The glutamine-supplemented TPN resulted in 
a reduced mortality rate (26.4 ± 1.6% vs. 34.5 ± 2.1%), reduced 
infection rate (13.8 ± 2.9 vs. 18.8 ± 3.9%) and reduced hospital 
length of stay (24.9 ± 0. 3 days vs. 26.0 ± 0.3 days). More importantly 
in this context, it resulted in a lower total cost per patient (€23 409 
± €3 345 vs. €24 161 ± €3 523). The treatment cost was completely 
offset by savings on ICU and antibiotic costs. 123 

A comparison of conventional vs. preoperative immunonutrition in 
gastrointestinal cancer patients resulted in a total nutrition cost of  
€3 407 in the conventional group and €14 729 in the supplemented 
or preoperative group. In patients without complications, the in-
hospital routine care was similar, but the mean cost of complication 
per patient in the conventional group was €6  178, compared to  
€4 639 in the preoperative group (p-value = 0.05). The total cost of 
patients with complications was €535 236 in the conventional group 
and €334 148 in the preoperative group. Cost-effectiveness (analysis 
performed by dividing per-patient costs of clinical nutrition and 
costs of treating postoperative complications with the percentage 
of complication-free patients; thus, the cost of achieving one 
complication-free patient per group) was €6 245 in the conventional 

group and €2 985 in the supplemented group.124

To the authors’ knowledge, there are no comparative cost data in 

South Africa. A simple approximate cost calculation rather than 

an economic analysis, (only including ICU bed and medication 

but excluding the cost of ventilator support, IV fluids and medical 

and allied professional fees) was undertaken (as an example) to 

determine the cost of one day for a high care (no complications), 

a critically ill patient in the ICU (with complications) as well as the 
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approximate cost of one day of enteral feeding with a semielemental 

formula plus 200 ml IV glutamine (Gauteng private hospital setting 

protocols and costs) (Table V). The costs were calculated for an 

elderly, well-nourished patient, who had a knee replacement and 

developed complications (sepsis and atrial fibrillation; treated with 

second- and third- generation antibiotics and an antifungal agent), 

who needed ventilation. Standard costs, if the patient did not develop 

complications for 12 hours in a high care unit (standard protocol) 

would have been R3 758.86 (Table V, Section A). In this example 

and in comparative terms, the standard (semielemental) feed as well 

as specialised (glutamine) nutrition therapy, alone or in combination 

(Table V, Section C), can be seen as relatively “minor” compared to 

the costs, in the same patient, of medication necessitated by the 

complication described in the example (Table V, Section B). If the 

assumption was also to be made that preventive nutrition support/

therapy would have significantly reduced the risk of the complication 

that was encountered for a total costs of R5 009.31 (Table V, Sections 

A and C), the approach would have still achieved significant costs 

containment in comparison to the costs of treating the specific 

complications in the example used.  

Bearing in mind that some studies have indicated that LICU can be 

shortened by two to three days with IV glutamine, when needed, 

the authors compared the cost of seven days of IV glutamine  

(R 738.81 x 7 = R5 171.67) vs. three extra ICU days (R 20 066.62 

x 3 = R60 199.86) in order to highlight the cost containment a 

pharmaconutrient-based nutrition therapy approach has to offer in 

the appropriate setting (the authors concede the theoretical nature 

of the example and the assumptions made therein).   

Amid a growing and strengthening evidence base supporting benefit, 

and clear indications of outcome benefits, as well as potential cost 

savings, critical care nutrition guidelines have been developed to 

help busy practitioners decide how to feed their critically ill patients. 

Despite good adherence to some recommendations, large gaps 

exist between many current recommendations and actual practice 

in ICUs, and consequently, nutrition therapy is still suboptimal.125 

Knowledge-to-action models need to be explored and implemented 

to optimise nutrition therapy at the bedside.126

Conclusion

The value of immunonutrition formula in the management of critically 

ill and preoperative and postoperative patients is now acknowledged 

by many nutrition therapy and medical practitioners. Amid the 

demonstration of clear clinical and cost-containment benefit in 

defined conditions, South African practitioners should also aim to 

close the knowledge-to-best-practice gap to optimise nutrition 

therapy and ultimately, clinical outcome in critically ill patients. It 

is clear that continued clinical research is necessary for an even 

better understanding of immunonutrition and pharmaconutrition 

approaches. Specifically, large, multi-centre, prospective RCTs 

that evaluate each immune-modulating nutrient individually, as 
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well as in various combinations, at various doses, and in defined 

patient populations, would lead to better evidence-based practice 

guidelines.127 A few such trials are already underway. In future, 

a paradigm shift to pharmaconutrition is gaining momentum, a 

practice which dissociates the administration of key single nutrients 

in the form of requirement-based PN or EN nutrition from the delivery 

of pharmaconutrients in the full effective pharmacological dose, as 

evaluated in large, well designed trials, in order to achieve therapeutic 

effects.1 The current use of clinical pharmacology, molecular biology 

and clinical research principles in the study of pharmaconutrients 

should provide further answers on how to administer the right 

nutrients, in the right doses, at the right time, in critically ill patients.2

References

1. Jones NE, Heyland DK. Pharmaconutrition: a new emerging paradigm. Curr Opin Gastroenterol. 
2008;24(2):215-222.

2. Wischmeyer P.  Nutritional pharmacology in surgery and critical care: “you must unlearn what 
you have learned”.  Curr Opin Anesthesiol. 2011;24:381-388. 

3. Calder  PC. Lipids and the critically ill patient. Nestle Nutr Workshop Ser Clin Perform 
Programme. 2003;8:75-91; discussion 91-8.

4. Grimble RF. Nutritional modulation of immune function. Proc Nutr Soc. 2001;60(3):389-397.

5. Dupertuis YM, Meguid MM, Pichard C. Advancing from immunonutrition to a pharmaconutrition: 
a gigantic challenge. Curr Opin Clin Nutr Metab Care. 2009;12(4):398-403.

6. Ochoa JB. Separating pharmaconutrition from classic nutrition goals: a necessary step. Crit 
Care Med. 2008;36(1):347–348.

7. Satyaraj E. Emerging Paradigms in Immunonutrition. Top Companion Anim Med. 
2011;26(1):25-32

8. Mizock BA. Immunonutrition and critical illness: An update.  Nutrition. 2010;26:701-707.

9. Gottschlich MM, Jenkins M, Warden GD, Baumer T, Havens P, Snook JT, et al. Differential effects 
of three enteral dietary regimens on selected outcome variables in burn patients. J Parent Ent 
Nutr. 1990;14:225-236.

10. Aller MA, Arias JI, Alonso-Poza A, Arias J. A review of metabolic staging in severely injured 
patients. Scand J Trauma Resusc Emerg Med. 2010;18:27.

11. Kruizenga HM, Van Tulder MW, Seidell JC, Thijs A, Ader HJ, Van Bokhorst-de van der Schueren 
MA. Effectiveness and cost-effectiveness of early screening and treatment of malnourished 
patients. Am J Clin Nutr. 2005;8:1082-1089.

12. Feldblum I, German L, Castel H, Harman-Boehm I, Bilenko N, Eisinger M, et al.  Characteristics 
of undernourished  older medical patients and the identification of predictors for undernutrition 
status.  Nutr J. 2007;6:37.

13. Barr J, Hecht M, Flavin KE, Khorana A, Gould MK. Outcomes in critically ill patients before 
and after the implementation of an evidence-based nutritional management protocol. Chest. 
2004;125(4):1446-1457.

14. Lim SH, Lee JS, Chae SH, Ahn BS, Chang DJ, Shin CS. Prealbumin is not sensitive indicator of 
nutrition and prognosis in critical ill patients. Yonsei Med J. 2005;46(1):21-26.

15. Holmes S. The effects of undernutrition in hospitalised patients. Nurs Stand. 
2007;44:22(12):35-38.

16. Neelemaat F, Kruizenga HM, De Vet HCW, Seidell JC, Butterman M, Van Bokhorst-van der 
Schueren MAE. Screening malnutrition in hospital outpatients. Can the SNAQ malnutrition 
screening tool be applied to this population. Clin Nutr. 2008;27:439-446.

17. Kondrup J, Allison SP, Elia M, Vellas B, Plauth M; Educational and Clinical Practice Committee, 
European Society of Parenteral and Enteral Nutrition (ESPEN). ESPEN guidelines for nutritional 
screening 2002.  Clin Nutr. 2003;22(4):415-421. 

18. Kyle UG, Genton L, Pichard C. Hospital length of stay and nutritional status. Curr Opin Clin Nutr 
Metab Care. 2005;8(4):397-402.

19. Ozkalkanli MY, Ozakalkanli DT, Katircioglu K, Savaci S. Comparison of tools for nutrition 
assessment and screening for predicting the development of complications in orthopedic 
surgery. Nutr Clin Pract. 2009;24(2):274-280.

20. Marik  PE,  Flemmer  M. Immunonutrition in the surgical patient. Minerva Anestesiol.  2012; 
78(3):336-342.

21. Mudge AM, Kasper K, Clair A, Redfern H, Bell JJ, Barras MA, Dip G, Pachana NA. Recurrent 
readmissions in medical patients: a prospective study. J Hosp Med. 2011;6(2):61-67.

22. Reilly JJ Jr, Hull SF, Albert N, Waller A, Bringardener S. Economic impact of malnutrition: a model 
system for hospitalized patients. J Parenter Enteral Nutr. 1988;12(4):371-376.

23. Chima CS, Barco K, Dewitt MLA, Maeda M, Teran JC, Mullen KD: Relationship of nutritional 
status to length of stay, hospital costs, discharge status of patients hospitalized in the medicine 
service. J Am Diet Assoc. 1997;97:975-978.

24. Desport JC, Preux PM, Truong TC, Vallat JM, Sautereau D, Couratier P. Nutritional status is a 

prognostic factor for survival in ALS patients. Neurology. 1999;53(5):1059-1073.

25. Braunschweig C, Gomez S & Sheean PM. Impact of declines in nutritional status on outcomes 

in adult patients hospitalized for more than 7 days. J Am Diet Assoc. 2000; 100:1316-1322.

26. O’Flynn J, Peake H, Hickson M, Foster D, Frost G. The prevalence of malnutrition in 

hospitals can be reduced: Results from three consecutive cross-sectional studies. Clin Nutr. 

2005;24:1078-1088.

27. Löser C. Malnutrition in Hospital. The Clinical and Economic Implications. Dtsch Arztebl Int. 

2010;107(51–52):911-917.

28. Sorensen J,  Kondrup J,  Prokopowicz J,  Schiesser M,  Krähenbühl L,  Meier R,  Liberda 

M;  EuroOOPS  study group. EuroOOPS: an international, multicentre study to implement 

nutritional risk screening and evaluate clinical outcome. Clin Nutr. 2008;27(3):340-249.

29. Álvarez-Hernández J, Planas Vila M, León-Sanz M, García de Lorenzo A, Celaya-Pérez S, 

García-Lorda P, Araujo K, Sarto Guerri B; on behalf of the PREDyCES® researchers.  Prevalence 

and costs of malnutrition in hospitalized patients; the PREDyCES® Study. Nutr Hosp. 

2012;27(4):1049-1059.

30. O’Keefe SJ. Malnutrition among adult hospitalised patients in Zululand during the drought of 

1983. S Afr Med J. 1983;64(16):628-629.

31. O’Keefe SJ, Thusi D, Epstein S. The fat and the thin-a survey of nutritional status and disease 

patterns among urbanized Black South Africans. S Afr Med J. 1983;63(18):679-683.

32. O’Keefe SJ, Dicker J, Delport I. Incidence of malnutrition in adult patients in Groote Schuur 

Hospital. S Afr Med J. 1986;70(1):16-20.

33. Symmonds KL. Nutritional status of hospitalised adult patients with pulmonary tuberculosis. S 

Afr J Clin Nutr. 1991;4(1):17-20.

34. Grobler-Barnard D, Labadarios D, Walelle AA, et al. The nutritional status of patients at 

Tygerberg Hospital. S Afr Med J. 1997;87:1238.

35. Kingu HJ, Longo-Mbenza B, Dhaffala A, Mazwai EL. Survival function and protein malnutrition 

in burns patients at a rural hospital in Africa. World J Surg. 2011;35(7):1546-1552.

36. Burke J. Infection control - A problem for patient safety. N Engl J Med. 2003;348:651-656.

37. Martin GS, Mannino DM, Eaton SE, Moss M. The epidemiology of sepsis in the United States 

from 1979 through 2000. N Engl J Med. 2003;348:1546-1554.

38. Balk RA. Severe sepsis and septic shock. Definitions, epidemiology, and clinical manifestations.  

Crit Care Clin. 2000;16(2):179-192.

39. Xu J, Yunshi Z, Li R. Immunonutrition in surgical patients. Curr Drug Targets. 2009;10:771-777.

40. Mannick JA, Rodrick ML, Lederer JA. The immunologic response to injury. J Am Coll Surg. 

2001;193(3): 237-244.

41. Hietbrink F, Koenderman L, Rijkers GT, Leenen LPH. Trauma: the role of the innate immune 

system. World J Emerg Surg. 2006;1:15. 

42. Murphy TJ, Paterson HM, Mannick JA, Lederer JA. Injury, sepsis, and the regulation of toll-like 

receptor responses.  J Leukoc Biol.  2004;75:400-407.

43. Elia M. The  economics  of  malnutrition. Nestle Nutr Workshop Ser Clin Perform 

Programme. 2009;12:29-40. 

44. Drover JW, Cahill NE, Kutsogiannis J, Pagliarello G, Wischmeyer P, Wang M, Day AG, Heyland 

DK. Nutrition therapy for the critically ill surgical patient: we need to do better! J Parenter 

Enteral Nutr. 2010;34(6):644-652.

45. Sauerwein HP. Emerging science in whey protein. Clinical Nutrition Highlights. 2005;1:2-7.

46. Khoshoo V, Brown S. Gastric emptying of two whey-based formulas of different energy density 

and its clinical implication in children with volume intolerance. Eur J Clin Nutr. 2002;56:656-658.

47. Lawson CM, Miller KR, Smith VL, McClave SA. Appropriate protein and specific amino 

acid delivery can improve patient outcome: Fact or fantasy? Curr Gastroenterol Rep. 

2011;13:380-387.

48. De Aguilar-Nascimento JE,  Prado Silveira BR,  Dock-Nascimento DB. Early  enteral 

nutrition with whey protein or casein in elderly patients with acute ischemic stroke: a double-

blind randomized trial.  Curr Opin Clin Nutr Metab Care. 2003;6(2):217-222.

49. Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev. 

1990;48:297-309.

50. Wischmeyer PE. Glutamine: role in critical illness and ongoing clinical trials. Curr Opin 

Gastroenterol. 2008;24:190-197.

51. Windle EM. Glutamine supplementation in critical illness: evidence, recommendations, and 

implications for clinical practice in burn care. J Burn Care Res. 2006;27:764-772.

52. Curi R, Newsholme P, Procopio J, Lagranha C, Gorjão R, Pithon-Curi TC. Glutamine, gene 

expression, and cell function. Front Biosci. 2007;12:344-357.

53. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the 

provision and assessment of nutrition support therapy in the adult critically ill patient: Society 

of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition 

(A.S.P.E.N.). J Parenter Enteral Nutr. 2009;33(3):277-316.

54. Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, et al. ESPEN guidelines on 

Parenteral Nutrition: Intensive care.  Clin Nutr. 2009;28:387-400.

55. Heyland DK,  Dhaliwal R,  Drover JW,  Gramlich L,  Dodek P;  Canadian Critical Care Clinical 

Practice Guidelines Committee.  Canadian clinical practice guidelines for nutrition support in 



110

SASPEN Supplement: Immunonutrition: a South African perspective

2012;25(3)S Afr J Clin Nutr

mechanically ventilated, critically ill adult patients. J Parenter Enteral Nutr. 2003; 27(5):355-373.

56. Critical Care Nutrition. Canadian clinical practice guidelines; http://www.criticalcarenutrition.

com/ (Practice Guidelines). [Accessed 1 August 2012.]

57. Wernerman J, Kirketeig T, Andersson B, Berthelson H, Ersson A, Friberg H, et al. Scandinavian 

glutamine trial: A pragmatic clinical multi-centre RCT of ICU patients. Acta Anaesth Scand. 

2011;55(7):812-818.

58. Andrews PJ, Avenell A, Noble DW, Campbell MK, Croal BL, Simpson WG, Vale LD, Battison CG, 

Jenkinson DJ, Cook JA; Scottish Intensive care Glutamine or seleNium Evaluative Trial Trials 

Group. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for 

critically ill patients.  BMJ. 2011;342:d1542.

59. Wischmeyer PE. Malnutrition in the acutely ill patient: is it more than just protein and energy? 

S Afr J Clin Nutr. 2011;24(3)Suppl:S1-S7.

60. Eroglu A. The effect of intravenous alanyl-glutamine supplementation on plasma glutathione 

levels in intensive care unit trauma patients receiving enteral nutrition: the results of a 

randomized controlled trial. Anesth Analg. 2009;109(2):502-505.

61. Pérez-Bárcena J, Crespí C, Regueiro V, Marsé P, Raurich JM, Ibáñez J, et al.  Lack of effect of 

glutamine administration to boost the innate immune system response in trauma patients in 

the intensive care unit. Crit Care. 2010;14(6):R233.

62. Garrel D, Patenaude J, Nedelec B, Samson L, Dorais J, Champoux J, et al. Decreased mortality 

and infectious morbidity in adult burn patients given enteral glutamine supplements: a 

prospective, controlled, randomized clinical trial. Crit Care Med. 2003;31(10):2444-2449.

63. Peng X, Hong Y, You Z, Wang P, Wang S. Glutamine granule-supplemented enteral nutrition 

maintains immunological function in severely burned patients. Burns. 2006;32:589-593.

64. Peng X, Hong Y, You Z, Wang P, Wang S. Clinical and protein metabolic efficacy of glutamine 

granules-supplemented enteral nutrition in severely burned patients. Burns. 2005;31:342-246.

65. Soguel L,  Chioléro RL,  Ruffieux C,  Berger MM. Monitoring the clinical introduction 

of a glutamine and antioxidant solution in critically ill trauma and burn patients. 

Nutrition. 2008;24(11-12):1123-1132. 

66. Heyland DK, Dhaliwal R, Day AG, Muscedere J, Drover J, Suchner U, Cook D; Canadian Critical 

Care Trials Group. REducing Deaths due to OXidative Stress (The REDOXS Study): Rationale and 

study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill 

patients. Proc Nutr Soc. 2006;65(3):250-263.

67. Al Balushi RM, Paratz JD, Cohen J, Banks M, Dulhunty J, Roberts JA, Lipman J. Effect of 

intravenous Glutamine supplementation IN Trauma patients receiving enteral nutrition study 

protocol (GLINT Study): a prospective, blinded, randomised, placebo-controlled clinical trial. 

BMJ Open. 2011;1(2):e000334.

68. Critical Care Nutrition. The RE-ENERGIZE Study: RandomizEd Trial of ENtERal Glutamine to 

minimIZE Thermal Injury. http://www.criticalcarenutrition.com/ (Research). [Accessed 1 August 

2012.]

69. Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, et al. ESPEN 

guidelines on Enteral Nutrition: Intensive care. Clin Nutr. 2006;25(2):210-223

70. Stechmiller JK, Childress B, Porter T. Arginine immunonutrition in critically ill patients: A clinical 

dilemma.  Am J Crit Care. 2004;13(1):17-23.

71. Witte MB,  Thornton FJ,  Tantry U,  Barbul A. L-Arginine  supplementation enhances 

diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways.  

Metabolism. 2002;51(10):1269-1273.

72. Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U. Should immunonutrition 

become routine in critically ill patients? A systematic review of the evidence. JAMA. 

2001;286(8):944-953.

73. Dent D, Heyland D, Levy H. Immunonutrition may increase mortality in critically ill patients with 

pneumonia: results of a randomized trial (abstract). Crit Care Med. 2003;30:A17.

74. Bertolini G, Lapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, et al. Early enteral 

immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized 

multicentre clinical trial. Intensive Care Med 2003;29(5):834-840.

75. Bower RH, Cerra FB, Bershadsky B, Licari JJ, Hoyt DB, Jensen GL, et al. Early enteral 

administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in 

intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit 

Care Med. 1995;23(3):436-449.

76. Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, et al. Nitrogen oxide levels 

in patients after trauma and during sepsis. Ann Surg. 1991;214(5):621-626.

77. Bansal V, Ochoa JB. Arginine availability, arginase, and the immune response. Curr Opin Clin 

Nutr Metab Care. 2003;6(2):223-228.

78. Popovic PJ, Zeh HJ, Ochoa JB.  Arginine and Immunity.  J Nutr. 2007;137(6 Suppl 

2):1681S-1686S.

79. Drover JW, Dhaliwal R, Weitzel L, Wischmeyer PE, Ochoa JB, Heyland DK. Perioperative 

use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg. 

2011;212(3):385-399.

80. Cerantola Y, Hübner M, Grass F, Demartines N, Schäfer M. Immunonutrition in gastrointestinal 

surgery. Br J Surg. 2011;98(1):37-48. 

81. Santora R, Kozar RA. Molecular mechanisms of pharmaconutrients. J Surg Res. 2010; 

161(2):288-294.

82. Aldridge C, Razzak A, Babcock TA, Helton WS, Espat NJ. Lipopolysaccharide-stimulated RAW 

264.7 macrophage inducible nitric oxide synthase and nitric oxide production is decreased by 

an omega-3 fatty acid lipid emulsion. J Surg Res. 2008;149(2):296-302.

83. Pontes-Arruda A, Aragão AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic 

acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe 

sepsis and septic shock. Crit Care Med. 2006;34(9):2325-2333.

84. Gadek JE, DeMichele SJ, Karlstad MD, Pacht ER, Donahoe M, Albertson TE, et al: Effect of 

enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients 

with acute respiratory distress syndrome.  Crit Care Med. 1999;27(8):1409-1420.

85. Singer P,  Theilla M,  Fisher H,  Gibstein L,  Grozovski E,  Cohen J. Benefit of an enteral diet 

enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with 

acute lung injury. Crit Care Med. 2006;34(4):1033-1038.

86. Pontes-Arruda A, Martins LF, de Lima SM, Isola AM, Toledo D, Rezende E, et al. Enteral nutrition 

with eicosapentaenoic acid, gamma-linolenic acid and antioxidants in the early treatment of 

sepsis: results from a multicenter, prospective, randomized, double-blinded, controlled study: 

the INTERSEPT study. Crit Care. 2011;15(3):R144.

87. Grau-Carmona T, Moran-Garcia V, Garcia-de-Lorenzo A, Heras-de-la-Calle G, Quesada-Bellver 

B, Lopez-Martinez J, et al.  Effect of an enteral diet enriched with eicosapentaenoic acid, 

gamma-linolenic acid and anti-oxidants on the outcome of mechanically ventilated, critically ill, 

septic patients. Clin Nutr. 2011;30(5):578-584

88. Rice TW,  Wheeler AP,  Thompson BT,  deBoisblanc BP,  Steingrub J,  Rock P;  NHLBI ARDS 

Clinical Trials Network.  Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant 

supplementation in acute lung injury. JAMA. 2011;306(14):1574-81.

89. Stapleton RD,  Martin TR,  Weiss NS,  Crowley JJ,  Gundel SJ,  Nathens AB, et al. A phase II 

randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung 

injury.  Crit Care Med. 2011. 39(7):1655-62.

90. Barbosa VM, Miles EA, Calhau C, Lafuente E, Calder PC.  Effects of a fish oil containing lipid 

emulsion on plasma phospholipid fatty acids, inflammatory markers, and clinical outcomes in 

septic patients: a randomized, controlled clinical trial. Crit Care. 2010;14(1):R5

91. Wang X, Li W, Zhang F, Pan L, Li N, Li J. Fish oil-supplemented parenteral nutrition in severe 

acute pancreatitis patients and effects on immune function and infectious risk: a randomized 

controlled trial. Inflammation. 2009;32(5):304-309.

92. Khor BS, Liaw SJ, Shih HC, Wang LS. Randomized, double blind, placebo-controlled trial of 

fish-oil-based lipid emulsion infusion for treatment of critically ill patients with severe sepsis.  

Asian J Surg. 2011;34(1):1-10.

93. Gupta A, Govil D, Bhatnagar S, Gupta S, Goyal J, Patel S, Baweja H. Efficacy and safety of 

parenteral omega 3 fatty acids in ventilated patients with acute lung injury. Indian J Crit Care 

Med. 2011;15(2):108-113.   

94. Sabater J, Masclans JR, Sacanell J, Chacon P, Sabin P & Planas M. Effects of an omega-3 

fatty acid-enriched lipid emulsion on eicosanoid synthesis in acute respiratory distress 

syndrome (ARDS): A prospective, randomized, double-blind, parallel group study.  Nutr 

Metab. 2011;8(1):22.

95. Klek S,  Chambrier C,  Singer P,  Rubin M,  Bowling T,  Staun M, et al.  Four-week parenteral 

nutrition using a third generation lipid emulsion (SMOFlipid) - A double-blind, randomised, 

multicentre study in adults.  Clin Nutr. 2012; Jul 11. [Epub ahead of print.]

96. Piper SN, Schade I, Beschmann RB, Maleck WH, Boldt J, Röhm KD. Hepatocellular integrity 

after  parenteral  nutrition: comparison of a fish-oil-containing  lipid  emulsion with an olive-

soybean oil-based lipid emulsion. Eur J Anaesthesiol. 2009;26(12):1076-1082.

97. Sungurtekin H, Deirmenci S, Sungurtekin U, Oguz BE, Sabir N, Kaptanoglu B.  Comparison of the 

effects of different intravenous fat emulsions in patients with systemic inflammatory response 

syndrome and sepsis.  Nutr Clin Pract. 2011;26(6):665-671.

98. Xu Z, Li Y, Wang J, Wu B, Li J. Effect of omega-3 polyunsaturated fatty acids to reverse biopsy-

proven parenteral nutrition-associated liver disease in adults. Clin Nutr. 2012;31(2):217-223.

99. Wei C, Hua J, Bin C, Klassen K. Impact of  lipid emulsion containing fish oil on outcomes of 

surgical patients: systematic review of randomized controlled trials from Europe and Asia. 

Nutrition. 2010;26(5):474-481.

100. Visser J, Labadarios D, Blaauw R. Micronutrient supplementation for critically ill adults: A 

systematic review and meta-analysis. Nutrition. 2011;27(7-8):745-758.

101. Berger MM, Cavadini C, Bart A, Mansourian R, Guinchard S, Bartholdi I, et al. Cutaneous zinc 

and copper losses in burns. Burns. 1992;18(5):373-380.

102. Hunt DR, Lane HW, Beesinger D, Gallagher K, Halligan R, Johnston D, et al. Selenium depletion 

in burn patients. J Parenter Enteral Nutr. 1984;8(6):695-699.

103. Berger MM, Rothen C, Cavadini C, Chioléro RL. Exudative mineral losses after serious 

burns: a clue to the alterations of magnesium and phosphate metabolism. Am J Clin Nutr. 

1997;65(5):1473-1481.

104. Voruganti VS, Klein GL, Lu HX, Thomas S, Freeland-Graves JH, Herndon DN. Impaired zinc and 

copper status in children with burn injuries: need to reassess nutritional requirements. Burns. 

2005;31(6):711-716.

105. Berger MM, Eggimann P, Heyland DK, Chioléro RL, Revelly JP, Day A, et al. Reduction of 

nosocomial pneumonia after major burns by trace element supplementation: aggregation of 

two clinical trials. Crit Care. 2006;10(6):R153.



111

SASPEN Supplement: Immunonutrition: a South African perspective

2012;25(3)S Afr J Clin Nutr

106. Berger MM, Spertini F, Shenkin A, Wardle C, Wiesner L, Schindler C, Chioléro RL. Trace element 

supplementation modulates pulmonary infection rates after major burns: a double-blond, 

placebo-controlled trial. Am J Clin Nutr. 1998;68(2):365-371.

107. Berger MM, Baines M, Raffoul W, Benathan M, Chioléro RL, Reeves C, et al. Trace element 

supplementation after major burns modulates antioxidant status and clinical course by way of 

increased tissue trace element concentrations. Am J Clin Nutr. 2007;85(5):1293-1300.

108. Heyland DK, Dhaliwal R, Suchner U, Berger MM. Antioxidant nutrients: a systematic review of 

trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005;1(3):327-337.

109. Berger MM, Chioléro RL. Key vitamins and trace elements in the critically ill. Nestle Nutr 

Workshop Ser Clin Perform Programme. 2003;8:99-117.

110. Manzanares W, Dhaliwal R, Jiang X, Murch L, Heyland DK. Antioxidant micronutrients in the 

critically ill: a systematic review and meta-analysis. Crit Care. 2012;16(2):R66. [Epub ahead 

of print.]

111. Avenell A, Noble DW, Barr J, Engelhardt T. Selenium supplementation for critically ill adults. 

Cochrane Database Syst Rev. 2004;18(4):CD003703.

112. Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda M, Shimazaki S. Reduction of 

resuscitation fluid volumes in severely burned patients using ascorbic acid administration. 

Arch Surg. 2000;135(3):326-331.

113. Annweiler C, Pochic S, Fantino B, Legrand E, Bataille R, Montero-Odasso M, Beauchet O. Serum 

vitamin D concentration and short-term mortality among geriatric inpatients in acute care 

settings. Adv Ther. 2010;27(4):245-249.

114. Lee P, Eisman JA, Center JR. Vitamin D Deficiency in Critically Ill patients. N Engl J Med. 

2009;360(18):1912-1914.

115. Jeng L, Yamshchikov AV, Judd SE, Blumberg HM, Martin GS, Ziegler TR, Tangpricha V. Alterations 

in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with 

sepsis. J Transl Med. 2009;7:28.

116. Mata-Granados JM, Vargas-Vasserot J, Ferreiro-Vera C, Luque de Castro MD, Pavón RG, 

Quesada Gómez JM. Evaluation of vitamin D endocrine system (VDES) status and response to 

treatment of patients in intensive care units (ICUs) using an on-line SPE-LC-MS/MS method. J 

Steroid Biochem Mol Biol. 2010;121(1-2):452-455.

117. Amrein K, Sourij H, Wagner G, Holl A, Pieber TR, Smolle KH, et al. Short-term effects of high-
dose oral vitamin D3 in critically ill vitamin D deficient patients: a randomized, double-blind, 
placebo-controlled pilot study. Crit Care. 2011;15(2):R104.

118. Manzanares W, Hardy G. Vitamin B12: the forgotten micronutrient for critical care. Curr Opin Clin 
Nutr Metab Care. 2010;13(6):662-668.

119. Sviri S, Khalaila R, Daher S, Bayya A, Linton DM, Stav I, van Heerden PV. Increased Vitamin B12 
levels are associated with mortality in critically ill medical patients. Clin Nutr. 2012;31(1):53-59.

120. Berger MM. Analyzing ICU physician and dietitian adherence to nutrition therapy guidelines. J 
Parenter Enteral Nutr. 2010;34(6):606-607.

121. Senkal M, Mumme A, Eickhoff U, Geier B, Späth G, Wulfert D, et al. Early postoperative enteral 
immunonutrition: clinical outcome and cost-comparison analysis in surgical patients.  Crit Care 
Med. 1997;25(9):1489-1496.

122. Strickland A, Brogan A, Krauss J, Martindale R, Cresci G. Is the use of specialized nutritional 
formulations a cost-effective strategy? A  national database evaluation. J Parenter Enteral Nutr. 
2005;29(1 Suppl):S81-S91.

123. Pradelli L, Iannazzo S, Zaniolo O, Muscaritoli M, Eandi M. Effectiveness and cost-effectiveness 
of supplemental  glutamine  dipeptide in total parenteral nutrition therapy for critically ill 
patients: a discrete event simulation model based on Italian data. Int J Technol Assess Health 
Care. 2012;28(1):22-28.

124. Braga M, Gianotti L. Preoperative immunonutrition: cost-benefit analysis. J Parenter Enteral 
Nutr. 2005;29(1 Suppl):S57-S61.

125. Cahill NE, Dhaliwal R, Day AG, et al. Nutrition therapy in the critical care setting: What is 
“best achievable” practice? An international multicenter observational study. Crit Care Med. 
2010;38(2):395-401.

126. Heyland DK, Cahill NE, Dhaliwal R. Lost in (knowledge) translation! J Parenter Enteral Nutr. 
2010;34(6):610-615.

127. Worthington ML, Cresci G. Immune-modulating formulas: who wins the meta-analysis race? 
Nutr Clin Pract. 2011;26(6):650-655.




